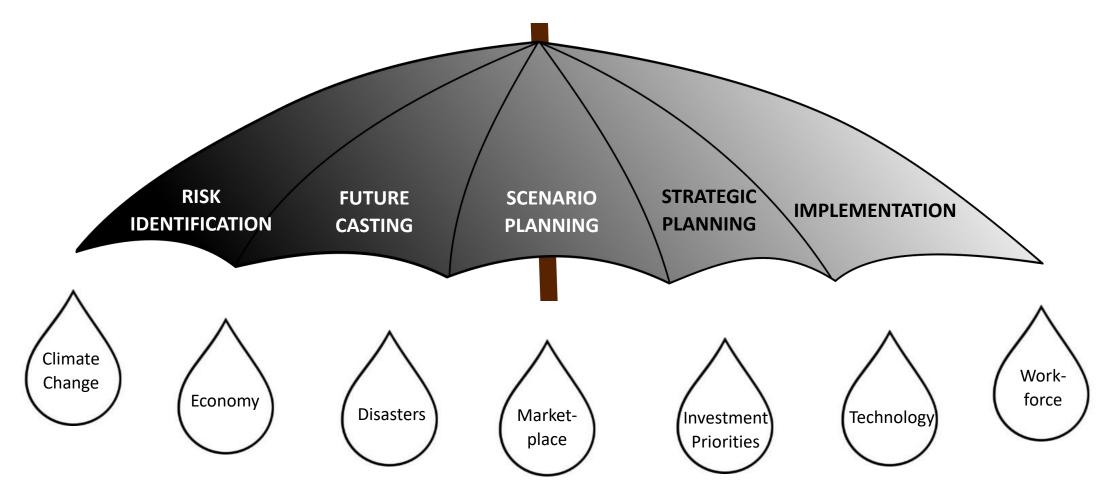
Seattle Public Utilities Resilience Planning

March 2019

Presentation Outline

- Resilience framework
- Seismic program and background
- Seismic hazards
- Study findings
- Mitigation recommendations


Our Resiliency Principles

- Flexible
- Redundant
- Agile
- Collaborative
- Robust

- Diverse
- Equitable
- Resourceful
- Community-Centered
- Evolving

SPU's Resiliency Framework

SPU Seismic Program

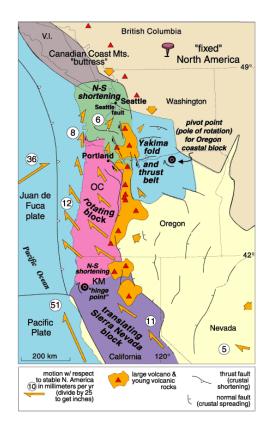
- 30-year history; first seismic study in 1990
- \$100 million in seismic investments to date
- Pathway to building a more resilient drinking water system
- Part of SPU's Resiliency Framework
- Seismic projects part of overall capital budget
- Seismic planning citywide effort

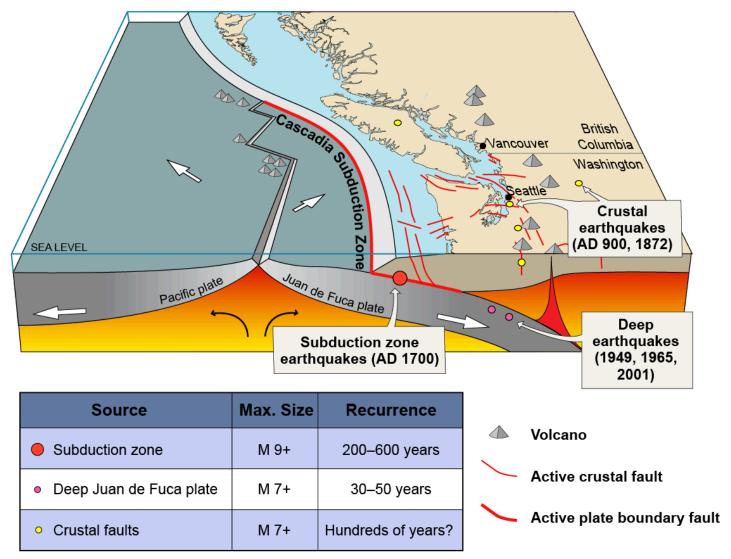
Seismic Hazards - Recent Earthquakes

	Year	Magnitude	Impacts
Loma Prieta, Bay Area	1989	6.9	Water outages mostly less than a few days; fire suppression water was an issue
Northridge, So. Cal	1994	6.7	Over 100 fires; water system damage mostly in poor soil areas; outage: 8 to 13+ days
Kobe, Japan	1995	6.9	109 fires immediately after earthquake (another 88 in surrounding cities); 60+ days to restore service
Christchurch, NZ*	2011	6.2	45+ days to restore service
Tohoku, Japan*	2011	9.0	345 fires; 45+ days to restore service

*15%-20% chance of a Christchurch-like or Tohoku-like type event in Seattle in next 50 years

New Developments since 1990


- Seattle Fault Zone, Cascadia Subduction Zone
- Earthquake experience (e.g., Northridge, Japanese, Chilean and New Zealand events)
- Potential for mass availability of earthquake-resistant pipe in U.S.

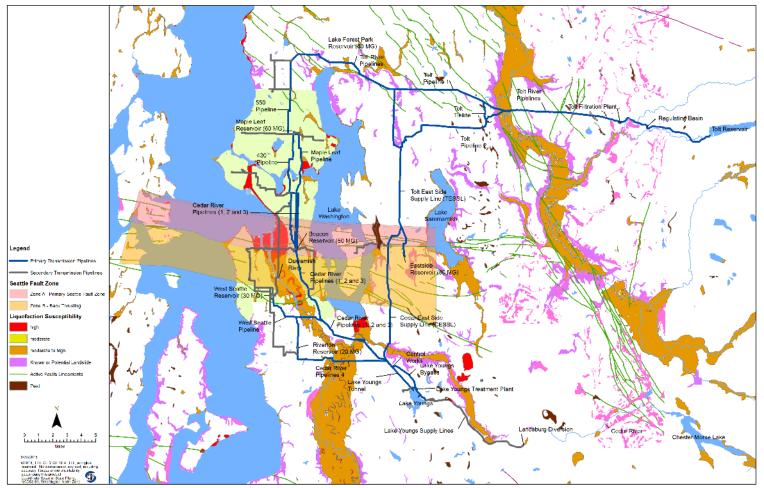


Earthquake Source Zones

*figure modified from USGS Cascadia earthquake graphics at http://geomaps.wr.usgs.gov/pacnw/pacnweq/index.html

Seismic Vulnerability Assessment, Goals

- Seismic vulnerability assessments for water system facilities
- Hydraulic modeling of post-earthquake performance
- Establish post-earthquake performance goals
- Develop planning level mitigation measures, cost estimates and schedule
- Define seismic design standards for water transmission and distribution pipelines



Earthquake Likelihood in 50 Years

- 15% to 20% chance of catastrophic earthquake, similar to 2011 Christchurch or Tohoku earthquakes
- 85% chance of at least one intraplate earthquake "similar" to the 2001 Nisqually earthquake

SPU Water System Seismic Hazard Map

Earthquake Vulnerability Assessment

- Loss of Cedar and Tolt transmission systems likely
- Loss of Eastside Supply Line likely
- Distribution pipeline failures
 - M7 SFZ Scenario: ± 2000 failures
 - M9 CSZ Scenario: ± 1400 failures
- Most terminal reservoirs remain functional
- Loss of over one dozen critical facilities
- Loss of water pressure throughout direct service area within ± 24 hours

Mitigation Approach – Next 15 to 20 Years

- Enhance emergency preparedness and response planning
 - Earthquake-specific response plan
 - Significantly augment pipeline repair material stocks
 - Assess adequacy/improve emergency drinking water
- Develop/implement isolation and control strategies
 - Reservoir isolation valves
 - Explore isolating areas of large amounts of pipe damage
 - Add valves to make isolation easier
- Keep Roosevelt and Volunteer as non-potable emergency storage

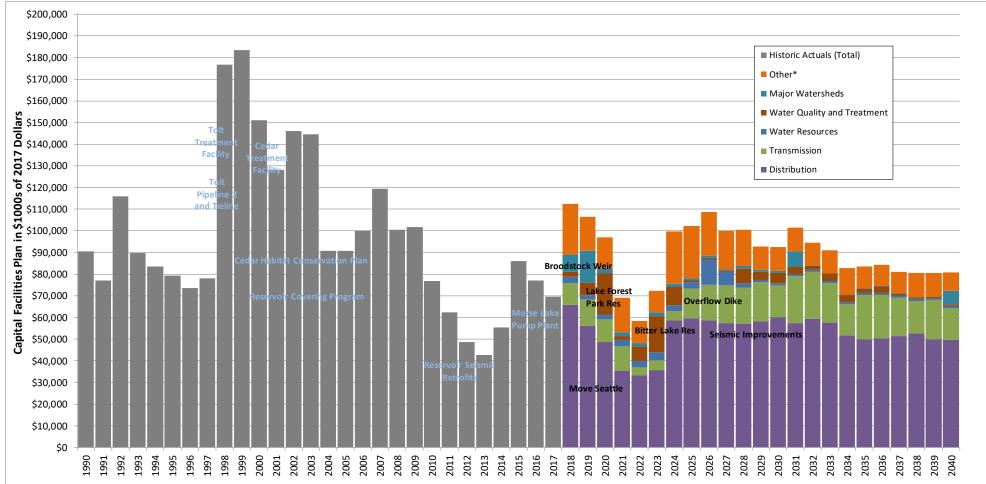
Mitigation Approach – Next 50-Plus Years

• Build it right

- Use earthquake-resistant pipe when pipe is replaced
- Design new facilities to remain functional
- Upgrade vulnerable critical facilities
 - Most vulnerable transmission pipelines locations
 - Critical facilities

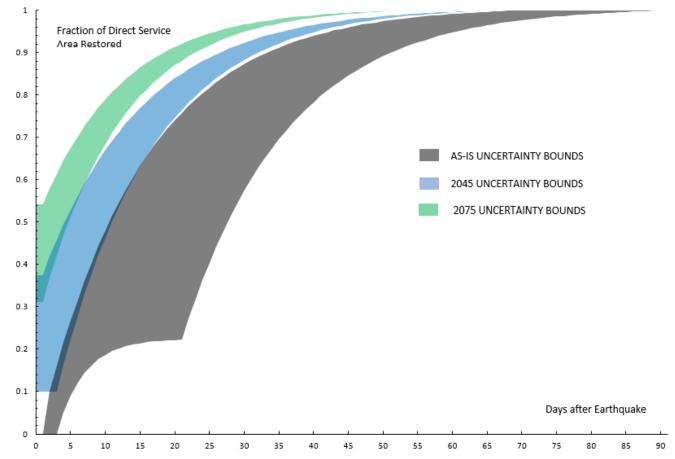
Capital Projects

- \$15 to \$20 million per year 50+ years
- Options analysis for all projects
 - Cost and functional tradeoff between:
 - Full upgrades functional after design EQ
 - Upgrades non-functional but repairable
 - Operational/response: expect significant damage, but able to repair quickly



Capital Projects

- Many drivers for capital projects, including seismic
- 2019 Water System Plan shows 20-year CIP projections, including seismic



Capital Projects

City of Seattle

Direct Service Area Restoration Projected Improvement

Summary

- Resilience planning a foundational issue at SPU
- New information about and better understanding of seismic risk and Seattle's regional drinking water system
 - Provides a path to a more resilient drinking water system
 - Short- and long-term planning; infrastructure upgrades
 - \$15 to \$20 million per year for next 50 years, with individual projects being reviewed with wholesale customers
 - Spending folded into capital improvement budget
 - SPU can help with wholesale customers' distribution system seismic programs, continue to coordinate regional planning

Questions?

